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When making choices under conditions of perceptual uncertainty,
past experience can play a vital role. However, it can also lead to
biases that worsen decisions. Consistent with previous observations,
we found that human choices are influenced by the success or failure
of past choices even in a standard two-alternative detection task,
where choice history is irrelevant. The typical bias was one that made
the subject switch choices after a failure. These choice history biases
led to poorer performance andwere similar for observers in different
countries. They were well captured by a simple logistic regression
model that had been previously applied to describe psychophysical
performance in mice. Such irrational biases seem at odds with the
principles of reinforcement learning, which would predict exquisite
adaptability to choice history. We therefore asked whether subjects
could adapt their irrational biases following changes in trial order
statistics. Adaptability was strong in the direction that confirmed a
subject’s default biases, but weaker in the opposite direction, so that
existing biases could not be eradicated. We conclude that humans
can adapt choice history biases, but cannot easily overcome existing
biases even if irrational in the current context: adaptation is more
sensitive to confirmatory than contradictory statistics.
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When making decisions, we often learn from past failures and
successes by using knowledge of those events to assist with

subsequent choices. For example, when a choice leads to a reward, it
can be beneficial to repeat it, or when it leads to failure, to avoid it.
Such a success-stay/fail-switch strategy can be fruitful in cooperative
behavior (1). Indeed the literature on reinforcement learning is built
on the idea that we learn the value of choice options from the
outcomes of past decisions (2, 3). Moreover, when the only source
of information on expected value are past decisions and their out-
comes, subjects have little difficulty relying on these past cues (4).
These behaviors demonstrate that humans can appropriately adapt
to the statistics of their history of choices.

Humans and other animals, however, also apply strategies based
on past failures and successes in contexts where their use is irra-
tional and will adversely affect performance. For example, human
subjects tend to apply the success-stay/fail-switch strategy to the
game of “rock-scissors-paper” (5) as do monkeys in the “matching
pennies” task (6). The optimal behavior, instead, is to respond
randomly, because any strategy can be exploited by other players
(7). People also resort to the suboptimal success-stay/fail-switch
strategy in situations that would require more complex decision-
making strategies (8). Thus, despite our ability in some situations to
adapt to choice history statistics, in other contexts, we are unable to
appropriately adjust behavior to account for choice history statistics.

Sensory psychophysics offers an opportunity to examine how
subjects integrate sensory evidence with past history and what con-
ditions promote appropriate adaptation to choice history statistics.
Most psychophysics experiments are carefully designed such that
subjects should make choices based only on the sensory evidence at
hand. However, under such conditions, human observers exhibit
nonsensory biases (9–20) For instance, in the classical two-alternative
forced choice task, a subject is asked to make a perceptual decision

based solely on the present sensory evidence (21) and to use success
or failure feedback only to optimize their use of such sensory in-
formation (22). However, both mice (14) and humans (15, 17, 18)
make choices that are biased by their recent history of successes and
failures and are thus suboptimal. Such biases, where prior beliefs
rather than evidence guide behavior, are a form of fallacy, similar to
the gambler’s fallacy or hot-hand fallacy (23, cf. 24).

Why might choice history biases remain despite degrading
performance? One possibility is that they may be hard-wired,
inadaptable to the statistics of the task at hand. In support of this
view, an early study reported that choice history biases remained
constant regardless of whether stimulus sequences were ordered
or randomized (25). Perhaps choice history biases are not
adaptable or perhaps they cause such a small loss in performance
that there is not sufficient incentive to adapt them (6) as they
may be optimal in more general circumstances.

To address this question, we assessed whether choice history
biases can adapt when given a learning signal in the form of trial
order statistics. We manipulated the probability of a visual stimulus
appearing on the left or right side of the screen, depending on the
success or failure on the previous trial. For example, in one of the
conditions, if the subject failed on the previous trial by choosing left,
the stimulus would be presented on the right with 80% probability.
We used a probabilistic choice model (14) to document each sub-
ject’s choice history biases, such as preference to stay on the same
side after a failure or switch after a success. By measuring the
biases, this model allowed us to assess their adaptability, by com-
paring the conditions where trial statistics were manipulated to the
baseline condition where they were truly random. We found that
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of βFail = 0.36, t(13) = 2.76, P = 0.03; 95% CI, 0.07–0.63;
Bonferroni-adjusted], which suggests a bit of overgeneralization.

Although both bias weights were adaptable, induced failure
biases were on average half as large as induced success biases. We
reasoned that the difference in adaptability between success and
failure biases could arise from the difference in these biases already
observed in the control condition, when successive trials were in-
dependent (Fig. 3D). Indeed, in many subjects, the failure bias was
substantially stronger than the success bias. Perhaps a strong pre-
existing bias is less adaptable than a weak one?

To test this hypothesis, we compared the magnitude of the shift of
induced bias relative to subjects’ natural bias (Fig. 6). We used the
same data as reported above, but compared each condition to the
control condition, in which trial statistics were completely random.
As we have seen (Fig. 3D), in the control condition subjects tended
to have negative failure biases (leading to a tendency to switch after
failure) and weaker, positive success biases (leading to a weaker
tendency to stay-after-success, mean βFail = Š0.55, mean βSuccess =
0.27, both P < 0.01, Bonferroni adjusted). We take these values to
indicate each subject’s “natural bias” (open symbols in Fig. 6). We
then examined the four adaptation conditions one by one.

This analysis confirmed that adaptation was more successful in
shifting biases in the same direction as a subject’s natural biases.
Specifically, when the stimulus statistics favored an unnatural strat-
egy of staying after failure (Fig. 6B), adaptation of the failure bias
was small and not significant [mean difference of βFail = 0.06, t(15) =
0.59, P = 0.99; 95% CI, Š0.29 to 0.17; Bonferroni adjusted]. By
contrast, when the stimulus statistics encouraged the natural switch-
after-failure bias (Fig. 6A), it resulted in significant effects in the
expected direction [mean difference of βFail = 0.39, t(14) = 5.4, P <
0.01; 95% CI, 0.23–0.54; Bonferroni adjusted). Similarly, subjects
significantly changed their success bias when stimulus statistics fa-
vored the natural, but weak, tendency of staying after a success [Fig.
6C; mean difference of βSuccess = 0.64, t(16) = 5.66, P < 0.01; 95%
CI, 0.40–0.88; Bonferroni adjusted]. Subjects also slightly adapted to
the opposite unnatural strategy of switching after a success [Fig. 6D;
mean difference of βSuccess = 0.36, t(13) = 2.90, P = 0.03; 95% CI,
0.09–0.63; Bonferroni adjusted).

Although there was a large bias variability between subjects in
the adaptation condition, the results were not driven by subjects

who changed their biases the most. We verified the absence of
long tails by computing D’Agostino’s test of normality and skew-
ness for both failure and success induced bias in each condition,
and we could not reject the hypothesis that weights were normally
distributed and not skewed (all P > 0.05).

To examine whether induced history biases increased across
runs, we calculated the slope of a linear regression fitted to success
and failure biases against runs in a given adaptation condition
(subject z-score values computed by bias type and bias induction
condition). Subjects gradually increased their stay-after-success bias
(slopeSuccess = 0.21, P < 0.01; no change in failure bias) and their
switch-after-success bias (slopeSuccess = Š0.41, P < 0.01; no change
in failure bias). Failure biases, instead, did not significantly change
across runs (all P > 0.05).

One possibility is that subjects could use a conscious cognitive
strategy if they became aware of our trial history manipulations.
However, when debriefed at the end of the experiment, no subject
noticed that switching or staying was contingent on previous
choices, despite the fact that their history weights showed that they
had learned this contingency.

Finally, we examined whether subjects were better able to adapt
history biases after being exposed to our trial history manipulations.
To examine changes in adaptability to trial history manipulations,
we split the data into “early” vs. “late” runs and compared the
magnitude of adaptation between the two. This comparison is fair,
because the order of adaptation conditions was randomized and
counterbalanced to avoid block ordering effects. When subjects
adapted to success-stay bias late rather than early, they did show
larger success biases [βSuccess early = 1.1, βSuccess late = 0.4, t(12.9) =
3.8, P < 0.01, Bonferroni adjusted]; however, no other condition
showed this effect (all P > 0.05). Overall, therefore, there seems to
be an innate ability to adapt the history biases to the trial statistics,
especially when these statistics tend to encourage the subject’s
default biases.

Discussion
We have seen that subjects display systematic choice history biases
in their behavior, even when performing a psychophysical task
where trials are fully randomized, and such biases lead to poorer
performance. These biases generally manifest as switch-after-failure

A B

Fig. 5. Induced choice history biases. ( A) Subject by subject choice history weights for experiments in which trial statistics were manipulated such that on 80% of
trials stimulus presentation location was switched after a failure ( ○) or stayed on the same side ( ●). The gray arrow shows the mean group shift from origin to
displacement. ( B) Same conventions as A, but for when trial statistics were manipulated after successes.
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or as stay-after-success strategies (8, 10, 11, 18). Both types of
biases were disadvantageous in that they reduced sensitivity for
most of the subjects. By manipulating the statistics of the trials so as
to encourage or discourage these strategies, we found that the
weights were most adaptable in a direction that strengthened them,
and much less so in a direction that reduced them. Our results thus
demonstrate that subjects can alter, but never fully disengage, their
natural choice history biases.

Although our results show a difference in adaptability, they do
not prove inadaptability of existing strategies. Perhaps with stron-
ger incentives, even such existing strategies might be adaptable.
History biases thus act like an unconscious confirmation bias; when
statistics of the environment agree with existing biases, they are
strengthened, but they are resilient to nonconfirmative statistics.

The inability to disengage disadvantageous choice history biases
suggests a more global strategy; indeed such biases occur across
many types of stimuli and sensory modalities. Choice-history biases
have been observed when subjects had to make judgments about
physical weights (9), auditory stimuli (12, 16, 18), or visual stimuli
(4, 8, 10, 11, 14, 18). As in our experiment, subjects show a diversity
of biases ranging from switching strategies (4, 9, 12, 14, 16), to
staying strategies (10, 11, 18), to success-stay/fail-switch strategies
(5, 6, 8, 18). These biases are typically limited to the preceding one

trial and the magnitude of the choice history biases is inversely
proportional to the strength of sensory stimulus, such that weaker
sensory stimulus elicits stronger choice history biases (13, 15, 18).
These effects are readily captured by our simple choice history
model (Fig. 2). However, it is possible that more complex choice
history biases exist, which may be identified using information
theory or novel statistical methods (29).

Our results and our model provide a way to correct for the loss
in visual sensitivity caused by choice history biases. This loss was
statistically significant for most subjects with a mean near 5%. For
about 20% of subjects, it resulted in a loss that ranged from 10% to
20%. Correcting for these kinds of biases can have implications not
only for basic but also for clinical and applied vision science. Visual
sensitivity is typically measured using a two-alternative force choice
(2AFC) task similar to the one we used here (30). Coupled with the
fact that older adults maybe more prone to using choice history
biases than younger adults (31), correcting for choice history bias
driven visual threshold measurement errors may be important in
real-world applications of vision sensitivity testing.

That choice history biases were most prevalent at weaker stimulus
intensities is suggestive of a Bayesian inference strategy, where
biases act as priors that influence decisions more when sensory
evidence is weak (32). Given this, Bayesian models of contrast

A B

C D

Fig. 6. Biases are easier to induce when they align with subject ’s natural biases. Data from Fig. 5 are plotted for each condition ag ainst experimental runs in which
trial order was completely randomized ( ○), which we use as a measure of subject ’s natural bias. Subjects had a tendency for sw itch-after-failure and stay-after-success
(gray arrows all begin in lower right quadrant). Inducing in this same direction ( A and C) resulted in large adaptation effect s, whereas inducing in the opposite
direction ( B and D) resulted in small if any changes. Gray arrows show the mean group shift s from origin to displacement. Plot ting conventions similar to Fig. 5.
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discrimination (33–35) might be better extended to incorporate
choice history biases than models that do not incorporate priors (27,
36). Bayesian frameworks have been used to explain motion per-
ception biases (37, 38), biases around cardinal orientations (39) and
tilt perception biases (40). An ecological basis of these biases is
thought to come from long-term and evolutionary exposure to en-
vironmental statistics (37, 39), although stimuli seen a few seconds
earlier can also bias our judgment of orientation perception (41, 42).
Thus, perceptual biases are thought to be specific to the particular
statistics of the sensory quality that is being inferred. Like what we
found with choice history biases, training can also alter more specific
perceptual biases (43). Similarly, stimulus expectations can be in-
troduced by cueing subjects to probabilities of motion direction or
indicating payoffs associated with one or another choice (44–46).
Despite these similarities, perceptual biases and perceptual learning
(47) effects typically do not readily transfer to other stimuli and
tasks, and are thus likely different from choice history biases, which
tend to generalize across stimuli and tasks.

If choice history biases reflect more global strategies than those
in perceptual inference and then reinforcement learning (2), with
some crucial caveats, might provide another computational frame-
work for understanding them. Reinforcement learning provides a
compelling account of how animals and humans can learn the
value of choice options based on past choices and rewards. In
games where reinforcement learning has been used to model
behavior, animal (48, 49), and human (8) subjects often display
success-stay/fail-switch strategy similar to those observed in our
experiments. Our task differs from typical reinforcement learning
tasks in that it requires weighing sensory evidence and choice op-
tions where the latter have no explicit value or probability associ-
ated with them (50). Nonetheless, humans may perform the task by
assigning value to choice options (51) or by treating successful trials
as rewards. Unlike typical reinforcement learning tasks in which
the value of a perceptually strong stimulus is assigned a value,
choice history biases were most evident at weak contrasts, sug-
gesting that they may best be described by an amalgam of Bayesian
inference and reinforcement learning theories.

Taken together, our results suggest that choice history biases
are general, not easily overcome in individual tasks and thus a
strategy likely to be useful across a wide variety of different con-
texts. Choice history biases are evident in a variety of situations
even when they are maladaptive (5). A possibility is that subjects
are applying strategies that lead to optimal decisions in their
natural environment, but those same strategies become fallacies
when faced with the artificial constrains of psychophysical exper-
iments (52, 53). In that sense, they resemble heuristics, which are
commonly used to assist in decision making under conditions of
uncertainty (54). Heuristics are generalizable and can be flexibly
used in many decision-making contexts (55), but when exposed in
a context where they are maladaptive, they seem arbitrary and
problematic. Similarly, choice history biases appear as fallacies in
attempts to rationally measure sensation, but nonetheless likely
constitute an important component of choice behavior across a
wide array of environments.

Materials and Methods
Observers. Fourteen naive observers and one of the authors volunteered as
subjects (five females; mean age, 31 y; age range, 21 –38 y) for data collected at
RIKEN. At Stanford University, 12 subjects volunteered, but 3 were excluded as
a result of exceptionally poor performance that suggested they were not
preforming the task (leaving 7 females and 2 males; age range, 19 –36 y). At
the UCL, data from 12 subjects were collected (1 female; mean age, 35 y).
Subjects gave prior written informed consent and optically corrected their
vision when necessary. The study procedures were approved in advance by the
RIKEN Ethics Committee and local Ethics Committees at the UCL and Stanford.

Apparatus at RIKEN and Stanford. Sitting in a dark room, observers responded
to stimuli presented on a 21-in gamma-linearized flatscreen cathode ray tube
(CRT) monitor (Dell Trinitron P1130; Dell) at RIKEN and 22.5-in light-emitting

diode (LED) monitor at Stanford both operating at 100-Hz vertical refresh rate
with resolutions set at 1,980 × 960 or 1,920 × 1,080 pixels, respectively. Ob-
servers self-adjusted the height of a pneumatic chair or table to comfortably
place their head on a gel-cushioned chin and forehead rest. The chin and
forehead rest restricted head movements which facilitated accurate monocu-
lar eye-tracking using infrared video-based eye-tracker at 500 Hz (EyeLink
1000; SR Research). We calibrated the eye tracker at the beginning of each run
using a built-in five-point calibration procedure. Visual stimuli and task se-
quence were programmed in MATLAB (MathWorks) using the MGL library
(justingardner.net/mgl ) on a Mac Pro computer (Apple).

Apparatus at UCL. Subjects responded to stimuli presented on a 21-in CRT
monitor operating at 75 Hz and gamma-linearized in software. Stimuli and trial
sequences were generated using a Matlab script and Psychtoolbox (56, 57).

Task and Stimulus.
RIKEN and Stanford.Subjects were asked to detect faint visual stimuli that were
presented for 500 ms either to the left or right of fixation. Stimuli were vertical
sinusoidal gratings (1 c/°, 6° in width and height, modulated by a symmetric 2D
Gaussian window at 100% of peak contrast) presented 12° to the left or right
of fixation at a viewing distance of 50.5 cm at RIKEN and 56 cm at Stanford (Fig.
1A). Gratings randomly drifted either to the left or to the right at 0.5 c/s. The
stimulus was presented within a white ring (diameter, 7° of visual angle) to
reduce spatial uncertainty (36). The monitor was calibrated with a Topcon SR-
3A-L1 Spectroradiometer (Topcon) at RIKEN and SpectraScan 650 (Photo Re-
search) at Stanford. The gamma table was linearized and dynamically adjusted
to take full advantage of the 10-bit gamma table resolution. The background
appeared uniformly gray with luminance equal to 47 cd/m 2 (midpoint of cali-
brated monitor ’s full luminance range) both at RIKEN and Stanford.

Stimulus detection difficulty varied with stimulus intensities that ranged from
0.4% (very difficult) to 3% (very easy) Michelson contrast, which is computed by
taking the difference between the lowest and highest luminance values of the
stimulus and dividing by the full luminance range of the monitor. We took
advantage of the video card ’s 10-bit gamma table to improve luminance
resolution while maintaining luminance linearity. Subjects did not report
image aftereffects.

At the beginning of each trial subjects fixated at the central white cross for
1–2 s followed by the presentation of the stimulus either to the left or right
side of the fixation. When the stimulus disappeared, the fixation color
changed to pale blue prompting subjects to respond. The task instruction was
to fixate, detect the stimulus location and rapidly and accurately make a
choice by pressing one of two keys with their left hand. An auditory feedback
followed, which indicated correct and incorrect decisions ( “pop” and “basso”
system sounds on Mac OS). A new trial started either immediately after the
response or after 4 second when the observer did not respond.

In each run, observers were shown five different contrast intensities. Each
intensity was presented either 50 or 60 times (we increased stimulus repetitions
after observing that longer run durations did not impair the performance).
Stimulus presentation order was pseudorandomized and each contrast in-
tensity appeared on the left or right side equal number of times. Each run lasted
around 10 min, and observers took short breaks between the runs by disen-
gaging their head from the chin rest while remaining in the room when
possible. Subjects completed different number of runs in different conditions. In
the condition with random trial order, 15 subjects at RIKEN completed an
average of 9 runs (range, 5 –13; mean number of trials per subject, 2,510),
whereas 9 subjects at Stanford completed an average of 3 runs (or 900 trials).
At RIKEN, 8 of the observers from the initial group of 15 also took part in
subsequent bias induction experiments. They completed an average of 11 runs
across all bias induction conditions with an average number of trials being
3,298. At Stanford, all nine subjects also participated in bias induction exper-
iments. Each subject finished 12 runs across all bias induction conditions
comprising an average of 3,600 trials. Each bias induction condition was typ-
ically completed on different testing days, and the order of conditions was
randomized and counterbalanced across subjects.

To test whether we could induce choice history biases we manipulated trial
order such that 80% of time after a success or failure the stimulus side stayed or
switched sides. To do this, we initially generated a random sequence of trials.
Stimulus side on a trial was then chosen to stay or switch 80% of the time to
match the desired trial order statistic given the choice outcome of the previous
trial. If the stimulus side did not match the random pregenerated order, a future
matching trial was swapped with the current trial. Because stimuli were pre-
generated in a random order with equal number of stimulus presentations on
either side and contrast intensities, the stimulus swapping guaranteed that
subjects were presented stimuli on the same side an equal number of time. Also,
this ensured that the run size in condition with random trial order did not differ
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from conditions in which the trial order statistics were manipulated. Stimulus
swapping became impossible for a few trials at the end of some runs, but this
resulted in negligible changes of desired trial sequence probabilities.

To learn the task and response buttons, subjects were given a few practice
trials. During practice, subjects also learnt that the task difficulty varies with
stimulus contrast and were instructed to guess when in doubt. The same set of
instructions were given in all conditions. We did not discuss the structure of
trials, such as randomization or trial dependencies.
UCL.Subjects were asked to detect vertical gratings (1.7 c/°, 4.8° in width and
height) presented randomly either to the left or right of a white fixation dot
for 200 ms. The grating was embedded in a white noise patch, and noise
patches were presented both on the right and left of fixation (Fig. 1 B). After
the stimulus offset, a high contrast white noise pattern appeared in place of
the stimulus as a mask to prevent image aftereffects. The monitor was situated
120 cm from the subject and had a uniformly gray background which was set
to the midpoint of the calibrated monitor ’s full range. Stimuli were presented
using the method of constant stimuli wherein grating contrasts were ran-
domly selected from values of 0% (no stimulus), 1%, 2%, 3%, 4%, or 8%.

Subjects were asked to fixate and then detect where the stimulus was pre-
sented. They were warned about the task difficulty and encouraged to go with
their instinct to guess the stimulus side when uncertain. After the grating was
masked by high contrast noise, subjects could report the detected stimulus by
pressing the Z or M keys for left or right side, respectively. The response was
followed by a brief visual feedback. The fixation dot changed to black when
subjects made a mistake, but otherwise remained white. The next trial started
after the feedback allowing subjects to set their own pace of the experiment.
Each run consisted of 550 trials (50 trials per contrast), and each subject com-
pleted three runs.

Analysis.
Data processing.Unanswered trials were excluded. In the natural history bias
condition, 51 such trials were excluded across all subjects, which was 0.13% of
the total number of trials in that condition. In all induced bias conditions, there
were 13 unanswered trials which was 0.04% of the total number of trials in
those conditions.
Psychophysical analysis.For each subject and for each run, proportion of right-
ward choices for each contrast intensity were computed as

pRðcÞ=
NRðcÞ

NRðcÞ+ NLðcÞ
, [1]

where c is the contrast intensity, and NRðcÞand NLðcÞare the total number of
rightward and leftward choices for contrast c, respectively. To get the mean
proportion of rightward responses for each subject, we averaged proportions
computed for each run.
Probabilistic choice model.To quantify the influence of stimulus contrast and
previous trial outcome (success or failure) on current trial choices, we used a
probabilistic choice model (14). The model is a binomial logistic regression which
estimates the probability of selecting t he right or left side based on weighting
of the stimulus location (separately for each contrast), success and failure out-
come on the previous trial and overall bias (preference of one side over the
other). The probabilistic choice model assumes that the log-odds of a proba-
bility of choosing a stimulus on the right ( p) or left (1 Š p) is a linear function of
sensory (stimulus contrast) and nonsensory (choice history) parameters

Lðt Þ= ln
�
pRðt Þ
pLðt Þ

�
= ln

�
pRðt Þ

1 Š pRðt Þ

�
= � SuccessCSuccessðt Š 1Þ+ � FailCFailðt Š 1Þ+ � 1I1ðt Þ

+ . . . + � n Inðt Þ+ � L=R,

[2]

where t is the trial number, PR and PL are probabilities of choosing right and
left, and CSuccessand CFail are the subject choice on the previous trial contingent
on whether it was a success or failure encoded as Š1 and 1 for left and right
choices, respectively. For previous trials that were not a success or failure, both
CSuccessand CFail were set to 0, and this only applied to the first trial of each run
(unanswered trials, which were subject to the same rule, were excluded). I is
the stimulus intensity encoded as Š1 and 1 to indicate left and right stimulus
side and 0 when the corresponding stimulus intensity was not presented.
� Success, � � Fail , � � 1 . . . � n are weights that were obtained by fitting the model,
and � L=R is the weight of the model intercept that indicates a general left or
right bias. Eq. 2 is a continuous function that ranges from Š� to +� . To
convert log-likelihood estimate into a probability, the logit (in generalized
form called softmax) function was used

pRðt Þ=
1

1 + eŠLðt Þ
, [3]

where pR is the probability of choosing right rising from 0 (choose left) to 1
(choose right), and Lðt Þ is the log-likelihood of choosing right computed
using Eq. 2.

Recently, Frund et al. (18) presented a model that captures choice history
biases by representing choices as a combination of stimulus (i.e., left/right
presentation) and response (e.g., left/right response) weights. This parame-
trization of choice history biases allows distinguishing between response
biases, such as when subjects generally prefer to switch independent of feed-
back as well as stimulus driven choice history biases, such as when subject ’s
choices are driven by the stimulus on the previous trial. Combination of these
parameters can help identify win-stay/lose-switch biases. The Frund et al. (18)
model has the same number of parameters as our model and is therefore
equivalent. Indeed, we found no difference in the fitted log-likelihoods of the
two models. Preference for using one or the other models would depend on
which parameterization is more conveniently interpreted in the context of the
questions being asked.

Model Fitting. We fitted the probabilistic choice model to data from each run.
For model fitting, we built a matrix in which the columns consisted of sensory
parameters, nonsensory parameters, and subject choice histories encoded
as Š1 or 1 to indicate left or right and 0 to code unrelated parameters in
the current trial. The number of sensory columns matched the number of
stimulus contrast intensities used during the run (typically 5). Nonsensory
parameters consisted of two columns indicating success or failure on the
previous trial. For each trial, one of these two columns was set to either Š1
or 1, whereas the other column was 0. Values of Š1 or 1 indicated the choice
on the previous trial (left or right) that led to failure or success. Finally,
subject choices were coded in a separate column and values of Š1 or 1 in-
dicated left or right choices, respectively.

To prevent overfitting, which could happen in runs in which subjects
responded 100% of the time to high-contrast stimuli, we used “ ridge ”
regularized logistic regression (58). Ridge (or L2) logistic regression has an
error parameter that is modeled to include the squared sum of regression
coefficients scaled by an additional parameter �

Lregularized = L+ �
X

� 2, [4]

where L is defined by Eq. 2, � are parameters defined in Eq. 2 with the ex-
ception of � L=R, and � � 0 is a free parameter that controls “ shrinkage ” of �
parameter estimates. To estimate an optimal � , we used a cross-validation
procedure. For each run, we fitted the model to randomly sampled 80% of the
trials and validated the model on 20% of the remaining trials (59). This ran-
dom sampling and validation procedure was performed 100 times using 19
values of � , which were exponentially distributed from eŠ8 to 20 (thus, for
each � , 100 values of likelihood were computed). We then selected the � value
that produced the highest likelihood. The likelihood was computed as

LH= � zðt Þ, [5]

where t refers to trial number and zðt Þcorresponds to

zðt Þ=
�

� + ð1 Š 2� ÞpRðt Þ, � � � � � � � � � � � �if �subject �choice = right
� + ð1 Š 2� Þ½1 Š pRðt Þ�Þ, � � �if �subject �choice = left

�
,

where pRðt Þ was the probability of choosing right computed using Eq. 3.
� denotes the lapse rate, which is the proportion of mistakes when the stimulus
is clearly visible, such as missing the stimulus due to an eye blink. The lapse rate
was computed as a proportion of errors at the highest stimulus intensity as
proposed by Prins (60). This approach to lapse rate computation was possible
because we chose the highest contrast such that it was clearly visible. The
model was fitted in R (61) using the “ glmnet ” package (62). We note that
the model is generalizable and can be fitted using the probit function in-
stead of logit (Eq. 3). Because logit and probit functions are nearly identical,
we expect the difference between logistic and probit regressions to be
indistinguishable.

In addition to L2 regularization, we also fitted the model using L1 regula-
rization. The difference between the two approaches is that, although L2 tends
to affect both strong and weak weights, L1 regularization tends to redistribute
the bias toward strong weights (e.g., weights corresponding to strong contrast
intensity) and eliminate model parameters that are weak. We found that both
L2 and L1 regularizations produce similar results, which testifies to the ro-
bustness of choice history biases.
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Interpreting Model Weights. Positive weights ( βSuccess   and   βFail) obtained for
success and failure choice history biases indicated that subjects preferred to
remain on the same side they chose on the previous trial, whereas negative
weights indicated a preference to switch sides. Positive weights obtained for
contrasts ðβ1...βnÞ indicated that subjects, overall, correctly chose the side
where stimuli of a given contrast were presented, whereas negative weights
indicated that subjects chose the side opposite to where those stimuli were
presented (making mistakes). Finally, positive and negative values of the in-
tercept ðβL=RÞ indicated left or right choice biases, respectively.

Model Selection. We used likelihood ratio tests, which allows comparisons
between two nested models (63), to evaluate whether subjects had choice
history biases. We compared the full model (probabilistic choice model) to a
simpler no-history model that contained the same parameters but without
choice history weights. Parameters of the full model were stimulus contrast
weights, choice history weights of success and failure on the previous trial, and
a weight for general bias for left or right choices. For this procedure, we first
computed the likelihood ratio statistic LR as follows:

LR = Š2 log
�

LHFull   Model

LHNoŠhistory   Model

�
,

where LHFull   Model and LHNoŠhistory   Model were maximum likelihoods of the full
and no-history models, respectively, computed using Eq. 5. The distribution
of values of the likelihood ratio statistics asymptotes to a χ2 distribution with
degrees of freedom equal to the difference in the number of parameters
between the two models, which in our case was 2 (success and failure bias
parameters were removed from the no-history model). Second, we subjected
the likelihood ratio to χ2 statistics to compute the probability of the null
hypothesis that the no-history model was better. P values less than or equal
to 0.05 were used to reject the null hypothesis and accept the full model as
the better fitting model.

Estimating Sensitivity Loss. To estimate differences in subjects ’ performance
with and without biases, we fitted psychometric curves to the model simu-
lated choices with and without bias. In one case, the model simulated sub-
jects’ biased choices by including both sensory and nonsensory terms. In
another case, the model included only sensory terms and all nonsensory
terms were set to zero to simulate a subject who has no biases and only
responds to sensory signals. In a simulated run, both biased and unbiased
models made choices on the same set of randomly generated trials of dif-
ferent contrast intensities presented to the left or right visual field. Each
contrast intensity was presented 48 times, similar to the number of trials
used during the experiment. We next fitted psychometric function to the
proportion of rightward choices using Eq. 6 to extract the slope as a measure
of sensitivity. The sensitivity loss was computed as the ratio of two slopes
that indicated the percent of drop of slope steepness caused by choice his-
tory biases. Each run was simulated 500 times for each subject, and the
median decline of sensitivity is shown in Fig. 4 A. Each subject model was
constructed by taking the average weights of multiple runs collected during
the experiment.

Fitting Psychometric Curves. The psychometric function models the relationship
between the stimulus intensity and subject ’s responses. For each run, the fit
was applied to the proportion of rightward choices when stimuli were pre-
sented to the right or left (Fig. 2). This approach to fitting psychometric curves

is more general as it helps to estimate left/right choice biases (64). The psy-
chometric function had the following form:

Ψðx;α, β, λÞ= λ+ ð1 Š 2λÞFðx;α, βÞ, [6]

where α and β are free parameters that correspond to the threshold and slope
of the psychometric function. λ is the lapse rate that indicates unintentional
errors that occur when the stimulus is obvious. The lapse rate was computed as
a proportion of errors when the stimulus was clearly visible (60). The stimulus
was clearly visible at 3% contrast for data collected at RIKEN and Stanford and
8% for the data acquired at the UCL (mean λ = 0.02; 95% CI, 0.01–0.03). The
same lapse rates were also used in estimating the weights of the probabilistic
choice model. Low lapse rates confirm that subjects were alert to the task and
choice history biases were not a result of inattention but rather unintended
misses. We applied probit analysis in which the psychometric function,
Fðx;α, βÞ, was a cumulative Gaussian

Fðx;α, βÞ=
1
��������
2πβ

p
Zcontrast

Š�

eŠðxŠαÞ2
2β2 , [7]

We chose probit analysis because it provided a better fit compared with the
logistic function (65). To assess changes in subjects’ performance, we computed
the slope and 75% contrast threshold of psychometric functions. The threshold
was computed as a contrast increment that allowed subjects to reach 75%
performance from 50% performance.

Variance Inflation Factor. Changing trial order statistics introduces relationship
between previous trial and current trial and potentially between choice history
bias parameters and stimulus contrast parameters, such that our predictor
variables could be determined by other pre dictors in the model. This collinearity
could affect accuracy of estimating model weights (66), which is computed as
1=ð1 Š R2Þ, where R2 correlation is computed by regressing each parameter of
the model with the remaining parameters (67). When R2 is close to 0 (little
correlation between parameters), varia nce inflation factor (VIF) is close to 1,
which indicates no collinearity effects, whereas larger R2 values lead to larger
VIF, and values above 5 mark a collinearity problem.

To ensure that we were actually measuring induced biases and that our trial
order manipulations did not spuriously cause changes in fitted choice history
weights, we ran several control analyses. We evaluated whether changing trial
order statistics introduced collinearity among model weights by computing VIF
and found no collinearity effects in our data ( Mvif = 1.07; 95% CI, 1.06–1.08).
We also permuted (scrambled) subjects ’ responses within each run 10 times
and fitted the model to these data to estimate choice history biases. This ap-
proach preserved trial sequence structure generated through trial order ma-
nipulations, but eliminated subjects ’ choice history biases. We found that
choice history weights, as expected, were not different from 0 (mean βFail =
Š0.003, P = 0.1; mean βSuccess = Š0.002, P = 0.2). We ran another validation by
simulating an observer based on subjects ’ model weights after removing
choice history biases (history weights were set to 0) and found that our trial
order manipulations did not induce any artificial biases in the induced di-
rection (all P > 0.05, one-tailed t test comparison with 0).
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